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ABSTRACT 

Highly transparent coatings with a maximum sheet resistivity between lo8 and lo9 ohms/square 
are desired to prevent charging of solar arrays for low Earth polar orbit and geosynchronous orbit 
missions. Indium tin oxide (ITO) and magnesium fluoride (MgF2) were ion beam sputter co- 
deposited onto fused silica substrates and were evaluated for transmittance, sheet resistivity and 
the effects of simulated space environments including atomic oxygen (AO) and vacuum 
ultraviolet (VUV) radiation. Optical properties and sheet resistivity as a function of MgF2 
content in the films will be presented. Films containing 8.4 wt.% MgF2 were found to be highly 
transparent and provided sheet resistivity in the required range. These films maintained a high 
transmittance upon exposure to A 0  and to V W  radiation, although exposure to A 0  in the 
presence of charged species and intense electromagnetic radiation caused significant degradation 
in film transmittance. Sheet resistivity of the as-fabricated films increased with time in ambient 
conditions. Vacuum heat treatment following film deposition caused a reduction in sheet 
resistivity. However, following vacuum heat treatment, sheet resistivity values remained stable 
during storage in ambient conditions. 
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1. INTRODUCTION 

When a spacecraft in geosynchronous orbit (GEO) encounters a solar substorm environment, the 
spacecraft is exposed to a plasma with particle energies between 1 and 50 keV [l]. Because of 
the variety of materials comprising spacecraft surfaces, differential charging of different 
materials on spacecraft surfaces in GEO due to plasma exposure can result in the formation of 
locally high electrical fields leading to arcing. The Marecs-A spacecraft, operating in 
geosynchronous orbit, experienced a power loss on part of its solar arrays due to charging and 
arcing [Z]. High voltage spacecraft in low Earth orbit (LEO) are also subject to plasma 
interactions leading to charging [2, 31. For example, the Upper Atmospheric Research Satellite 
(UARS) has experienced difficulty interpreting instrument data due to charging of its solar arrays 
[2]. Other problems that can occur are ion sputtering damage [2, 31 and enhanced contamination 
whereby contaminants are attracted to charged surfaces and deposit onto them. [l, 2,3] In order 
to prevent these problems, a coating that is slightly conductive has been proposed for use on 
spacecraft solar arrays that are vulnerable to charging problems such as those flown in 
geosynchronous orbit and low Earth polar orbit [4]. It is necessary that such a coating have a 
maximum sheet resistivity of lo9 ohmdsquare for GEO applications [ 11 or a maximum sheet 
resistivity of lo8 ohmdsquare for LEO polar applications [5 ] .  The coating must have a high 
transmittance to minimize impact on solar cell performance. It must also be environmentally 
durable to solar radiation, thermal effects, and, for LEO applications, atomic oxygen. Indium tin 
oxide films have been recommended as conductive coatings for solar cell applications. [6,7] 
However, IT0 alone has been shown to undergo optical properties degradation in LEO [8] and in 
the simulated space environment of an RF plasma asher where samples were exposed to a 
plasma containing AO, charged species and electromagnetic radiation [5 ] .  Protection or 
modification of IT0 is required to prevent its degradation in the LEO environment. 

Ion beam sputter deposition from targets composed of at least two materials has been 
investigated for purposes of tailoring film properties [9]. Because conventional spacecraft solar 
cell assemblies have used magnesium fluoride as an antireflective, external surface coating [lo], 
it is an appropriate candidate for co-deposition with IT0  to obtain a transparent, slightly 
conductive, LEO-durable coating. This paper investigates ion beam sputter co-deposited films of 
IT0 and MgF2. Films were ion beam sputter co-deposited onto fused silica substrates. 
Transmittance and sheet resistivity were measured as a function of calculated MgF2 content in 
the films. Film sheet resistivity was monitored as a function of time after deposition, and after 
vacuum heat treatment. Screening tests were conducted to determine the effects of A 0  and VUV 
radiation on film optical properties. 
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2. EXPERIMENTAL PROCEDURES 

a 

2.1 Film Deposition 
Mixed films of IT0 and MgF2 were ion beam sputter co-deposited onto fused silica substrates. 
Figure 1 shows the configuration of the dual ion beam sputter deposition system inside its high 
vacuum facility including an example of the configuration of the mixed target for co-deposition 
of MgF2 (Material A) and IT0 (Material B). The IT0 target was comprised of 91 mole percent 
In203 and 9 mole percent Sn02. The MgF2 content in the deposited films was varied by using 
between 30 and 130 degrees total included angle of pie-shaped wedges of MgF2 placed on the 
IT0 target. Wedges were each 20 to 30 degrees included angle and were evenly spaced over the 
IT0 target to provide the most uniform deposition over the substrate area. The hypothetical 
volume percent of MgF2 in the deposited film was calculated as shown in Equation 1 where 0 
represents the total included angle of the pie shaped wedges and R represents the deposition rate 
for each target material. Deposition rates for MgF2 and IT0 are 2.5 and 4.0 nm/min, 
respectively. Weight and mole percent composition were also calculated using density and molar 
weight of IT0 and MgF2. Table 1 shows the calculated compositions of MgF2 for the various 
target configurations used. 

Film deposition procedures were as follows: first, the 2.5 cm diameter ion source was used for a 

5 to 20 minute sputter cleaning of the target. Then the 15 cm diameter ion source was used for a 
2 minute sputter cleaning of the substrates. Finally, the 2.5 cm source was used to deposit the 
film onto the substrates. The ion sources were operated using argon. Additionally, either pure 
dry air or an RF discharge of pure dry air was flowed into the chamber during deposition to 
promote deposition of an oxide-rich film. Various flow rates of air were used to determine the 
effect on film properties. As air flow rate was increased, argon flow rate was decreased to 
maintain the desired chamber pressure during deposition. Air flow was measured in standard 
cubic centimeters per minute (sccm). Use of the RF air discharge provided more reactive oxygen 
species, atoms and ions, than molecular oxygen flowed directly into the chamber. The effect of 
these different types of oxygen environments on film properties will be discussed. System 
pressure was approximately 6.67 mPa ( 5 ~ 1 0 - ~  torr) with no gas flowing into the chamber and 
approximately 40 mPa ( 3 ~ 1 0 - ~  torr) during deposition. 

2.2 Film Thickness and Optical Properties Characterization 
To fabricate samples for film thickness measurement and optical properties measurement, fused 
silica optical flat substrates, 2 cm by 2 cm, were partially covered with polyimide tape prior to 
deposition. After deposition, the tape was removed and the surfaces were scanned with a surface 
profiler to measure the step change between the tape-covered and coated surfaces. Film 
thicknesses ranged between 20 and 110 nm. 
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Transmittance spectra in the 250-2500 nm wavelength range were obtained using an ultraviolet- 
visible-near infrared spectrophotometer equipped with a 15 cm diameter integrating sphere. 
Total solar transmittance values over this wavelength range were calculated using standard 
procedures [ 1 11. 

2.3 Sheet Resistivity Characterization 
To fabricate samples for sheet resistivity measurements, 1 cm by 2 cm fused silica substrates 
were covered with an aluminum mask prior to deposition to produce a bar-shaped deposited film 
measuring 0.3 cm by 1.9 cm with three contact arms along the edges to permit four-lead 
resistance measurements to be made. Electrical contact to the film was made with spring-loaded 
pressure contacts. Electrical measurements were made with direct currents of 5 pA to 10 mA 
using guarded, shielded cabling and high-impedance electrometers to measure resistive voltages. 
Most electrical measurements were made in the ambient laboratory atmosphere. Some samples 
were measured in a vacuum of approximately 5.3 Pa (40 mtorr). Three samples underwent 
vacuum heat treatment by heating to 400°C for 1 hour in a vacuum of 0.13 mPa 
determine effects on sheet resistivity. Sheet resistivity is defined in Equation 2 as 

torr) to 

plt = Rwlt P I  

where p is the resistivity of the specific material, t is thickness, R is measured resistance, w is 
width, and t is length of a resistor or conductor in sheet form. The term plt is referred to as the 
sheet resistivity given in units of ohmslsquare (!XU), and tlw is referred to as the number of 
“squares .” 

2.4 Screening Tests For Space Environmental Durability 
Samples of deposited films on fused silica substrates were exposed to A 0  in screening tests to 
determine the effect of A 0  on the transmittance of IT0 films compared to that of mixed ITO- 
MgF2 films. An RF plasma asher which generates a 13.56 MHz RF-induced discharge of air in a 
partial vacuum of 20 Pa (150 mtorr) was used to simulate the atomic oxygen environment of low 
Earth orbit. A Kapton H polyimide witness coupon was exposed along with the samples, and the 
effective A 0  fluence was measured based on the mass loss of Kapton H which has a known in- 
space erosion yield of 
environment using the following procedure: first, samples were located inside of a Faraday cage 
comprised of an aluminum foil box with louvers so that samples received scattered atomic 
oxygen exposure, but were shielded from line-of-sight exposure to charged species and intense 
electromagnetic radiation. Samples were then characterized for total solar transmittance. 
Following transmittance characterization, the same samples were then exposed directly in the 
plasma where they received exposure to electromagnetic radiation, including intense V W 
radiation [13], and charged species [ 131 in addition to AO. Following exposure, total solar 
transmittance of samples was measured. 

cm3/atom [12]. Samples were exposed to the RF plasma 

Samples of mixed ITO-MgF2 films deposited onto fused silica substrates were also screened for 
durability to VUV radiation. Samples were exposed to a maximum of 3 VUV suns from a 
deuterium lamp in the 115 to 200 nm wavelength range. This VUV deuterium lamp was 
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installed inside of a water-cooled copper chamber in a cryopumped high vacuum system. 
Pressure during exposure was approximately 1.2 mPa ( 9 ~ 1 0 - ~  torr) and samples reached a 
maximum temperature of 120°C. The lamp was calibrated with a cesium-iodide phototube with 
a MgF2 window sensitive in the 115-200 nm wavelength range. This phototube had been 
calibrated to a deuterium lamp of the same type which had been calibrated by the National 
Institute of Standards and Technology. 

3. RESULTS AND DISCUSSION 

3.1 Transmittance and Sheet Resistivity of As-Fabricated ITO-MgF2 Films 
Figure 2 shows total solar transmittance of samples of films deposited onto fused silica substrates 
as a function of calculated percent of MgF2 in the film. Samples were fabricated with an average 
deposited film thickness of approximately 65 nm. The total solar transmittance of the fused 
silica optical flat substrates is approximately 0.93. As shown in the figure, as the MgF2 content 
of the film is increased, the transmittance of the samples increased. Error in total solar 
transmittance values is f 0.005. Figure 3 shows sheet resistivity of the deposited film as a 
function of MgF2 content. These data show that a maximum of approximately 9.2-10 wt.% 
MgF2 is necessary for mixed ITO-MgF2 films with a maximum sheet resistivity between 10' and 
lo9 ohmshquare required for the arc-proof coating. Error in sheet resistivity measurements is f 
20%. 

3.2 Effect of Air Background Gas During Deposition on Film Properties 
Table 2 shows properties of ITO-8.4 wt.% MgF2 films on fused silica substrates as a function of 
air flow during deposition. For films of 27-35 nm thickness prepared using various flow rates of 
pure dry air, sheet resistivity varied between lo7 and 10" ohmdsquare, and films were highly 
transparent. Varying the flow rate of pure dry air in the chamber did not appear to produce a 
significant effect on optical or electrical properties as shown in Table 2. However, use of an RF 
discharge of air produced samples with higher resistivity than those produced using a background 
of pure dry air. A sample with a 29 nm deposited film prepared using an RF discharge of air 
showed a higher sheet resistivity, 10" to 10" ohms/square, than samples prepared using air 
alone. Oxygen partial pressure during deposition has been shown to have an effect on the 
resistivity of IT0 and indium oxide films [7,14]. Reference 7 reports that at levels of oxygen 
partial pressure greater than approximately 13.3 mPa torr), increasing oxygen partial 
pressure decreases oxygen vacancies in the depositing film resulting in increased resistivity. 
Increasing the reactivity of the oxygen at the same partial pressure, as occurs when using an RF 
discharge of air instead of pure dry air, should also produce the effect of decreasing oxygen 
vacancies and thus increasing resistivity as is observed in Table 2. Based on this observation, 
one would expect the increase in flow rate of pure dry air to also produce an increase in sheet 
resistivity. However, because the chamber background pressure remained essentially unchanged 
regardless of the pure dry air flow rates used, and because air contains only 21% oxygen, it is 
likely that increasing the flow rate of pure dry air did not produce a significant enough increase in 
the oxygen partial pressure to cause an increase in the sheet resistivity of the deposited films. 
This lack of a relationship between pure dry air flow rate and sheet resistivity of deposited films 
is evident in Table 2. 
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3.3 Sheet Resistivity Stability of ITO-MgF2 Films in Ambient Conditions 
Figure 4 shows sheet resistivity as a function of time after deposition for three identically 
fabricated samples of ITO-8.4 wt.% MgF2. In general, sheet resistivity appears to increase over 
time after deposition and is somewhat unstable, sometimes changing an order of magnitude over 
a short period of time. Storage of samples under vacuum of 5.3 Pa (40 mtorr) did not stabilize 
sheet resistivity. 

Irreversible resistivity changes have been observed in lead oxide films by heating in vacuum or 
hydrogen to 400°C or in oxygen or air to 450°C [15]. To determine whether this effect would 
also occur in and stabilize ITO-MgF2 films, vacuum heat treatment was performed on these 
films. Figures 5a and 5b show the results of vacuum heat treatment of deposited films of ITO- 
2.4wt.% MgF2 (21 nm film thickness) and ITO-8.4 wt.% MgF2 (27 nm film thickness) on fused 
silica samples as compared with samples prepared in the same deposition batches that were not 
heat treated. Heating samples for 1 hour to 400°C in a vacuum of 0.133 mPa ( 
reduction in sheet resistivity between one and four orders of magnitude. Following this 
treatment, sheet resistivity values remained significantly more stable as shown in Figure 5 .  
Although these data imply that heat treatment decreases and stabilizes sheet resistivity, the 
resistivity stabilization of the heat treated samples may be simply due to the lower value of sheet 
resistivity. 

torr) caused a 

Deposited films of greater thickness than those described in this paper may have more stable 
sheet resistivities. Electrical properties of transparent conducting oxides are known to be 
influenced by deposited film thickness due to the effects of increasing grain size in thicker films 
U61. 

Samples were not prepared €or analysis of the effects of heat treatment on film optical properties. 
However, it is expected that the lowered resistivity induced by heat treatment would also 
decrease the transmittance of the deposited film due to the increasing metallic nature of the film. 

3.4 Space Environmental Durability Screening Tests 
A sample of ITO-8.4 wt.% MgF2 of 30 nm thickness on fused silica was exposed to atomic 
oxygen in an RF plasma chamber. During the first part of the exposure, the sample was located 
inside a Faraday cage aluminum box with louvers. This allowed scattered atomic oxygen 
exposure, but prevented line-of-sight radiation exposure. The transmittance spectrum was 
essentially unchanged after exposure to a Kapton effective atomic oxygen fluence of 5x1021 
atoms/cm2 in the Faraday cage as shown in Figure 6. This atomic oxygen fluence is 
representative of 1.5 years on the International Space Station for solar array surfaces. Subsequent 
exposure of this sample directly in the plasma to a Kapton effective atomic oxygen fluence nearly 
an order of magnitude less, 8 ~ 1 0 ~ '  atoms/cm2, resulted in significant degradation in 
transmittance. This atomic oxygen fluence is representative of three months on the International 
Space Station for solar array surfaces. Compare this degradation to that of IT0 as shown in 
Figure 7. The IT0 film also showed durability to atomic oxygen when exposed in a Faraday 
cage to a Kapton effective fluence of 5x1021 atoms/cm2 . However, also as shown in Figure 7, 
the IT0 film was much more severely degraded than the mixed film shown in Figure 6 upon 
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exposure in the plasma to an effective atomic oxygen fluence of 8 ~ 1 0 ~ '  atoms/cm2 indicating that 
the ITO-MgF2 mixed film is more durable to the RF plasma environment than I T 0  alone. The 
RF plasma environment produces an intensity of vacuum ultraviolet radiation which is one to 
three orders of magnitude higher than the LEO environment. [13] It also produces an electron 
density which is three to seven orders of magnitude greater than LEO with electrons of higher 
energy. [13] Therefore, it is likely that the degradation due to plasma exposure for I T 0  and 
ITO-MgF2 films shown in Figures 6 and 7 is due to an unrealistically severe environment. 
However, the comparison between the IT0 and ITO-MgF2 films does give a valid indication of 
the increased durability of the mixed film in the RF plasma environment. 

Figure 8 shows the transmittance spectra before and after exposure of a sample of ITO-8.4 wt.% 
MgF2 before and after exposure to 250 equivalent sun hours of vacuum ultraviolet radiation at an 
intensity of three vacuum ultraviolet suns in the wavelength range between 115 and 200 nm. 
This exposure caused essentially no change in the transmittance of the film as shown by the total 
solar transmittance values before and after exposure of 0.925 and 0.921, respectively. 

In order to most accurately predict the long-term in-space durability of the ITO-MgF2 films, 
longer duration A 0  and VUV testing is required. Also, it will be necessary to determine the 
effects of A 0  and VUV on sheet resistivity. Because of the instability of sheet resistivity in 
ambient conditions, the effects of A 0  and VUV on sheet resistivity were not evaluated as part of 
this effort. Further modifications to the film formulation will be made in an effort to stabilize 
sheet resistivity. 

4. CONCLUSIONS 

Co-deposition of indium tin oxide and magnesium fluoride using ion beam sputter deposition 
processes resulted in highly transparent films with sheet resistivity suitable for use on an arc- 
proof solar array. Sheet resistivity could be tailored by varying the composition of MgF2 in the 
film. Mixed films of ITO-8.4 wt.% MgF2 deposited onto fused silica substrates were fabricated 
with initially measured sheet resistivities between lo7 and 10" ohms/square. Total sol& 
transmittance remained essentially unchanged upon exposure of these samples to atomic oxygen 
and to vacuum ultraviolet radiation in screening tests, although exposure to the combined 
environment of atomic oxygen, charged species and electromagnetic radiation present in an FW 
plasma environment caused degradation in the transmittance of this film. Transmittance 
degradation of the mixed film was not as severe as the degradation of an IT0 film upon exposure 
in the same environment. Sheet resistivity of as-fabricated samples increased over time during 
sample storage in room air indicating instability in electrical properties. Vacuum heat treatment 
following film deposition caused sheet resistivity to decrease, in some cases by several orders of 
magnitude. However, following vacuum heat treatment, sheet resistivity values were 
considerably more stable during storage in room air. In general, mixed films of ITO-MgF2 show 
promise for use on an arc-proof solar array; however, adjustments to thickness and composition 
may be needed to provide greater stability in electrical properties. 
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TABLE 2 - PROPERTIES OF ITO-8.4 wt.% MgF2 FILMS ON Si02 SUBSTRATES 

Film 
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Figure 1: Configuration of ion sources, sputter targets and deposition substrates in dual ion 
beam sputter deposition system. 
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Figure 2: Total solar transmittance of samples of mixed ITO-MgF2 films deposited on fused 
silica as a function of calculated percent of MgF2. 
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Figure 5: Effect of vacuum heat treatment of 1 hr at 400°C on sheet resistivity of a) ITO-2.4 
wt.% MgF2 deposited films and b) ITO-8.4 wt.% MgF2 deposited films. 
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Figure 6: Effects of RF plasma exposure, in a Faraday cage and directly in the plasma, on 
transmittance spectra of ITO-8.4 wt.% MgF2 film on fused silica. 
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Figure 7: Effects of RF plasma exposure, in a Faraday cage and directly in the plasma, on 
transmittance spectra of a sample of an IT0 film deposited on fused silica. 
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Figure 8: Effect of exposure to 250 equivalent sun hours of VUV radiation at 3 VUV suns 
on transmittance of a sample of ITO-8.4wt.% MgF2 film deposited on fused silica. 
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